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High-temperature expansions of Bures and Fisher information priors

Paul B. Slater*
ISBER, University of California, Santa Barbara, California 93106-2150

~Received 2 November 1999!

For certain infinite and finite-dimensional thermal systems, we obtain—incorporating quantum-theoretic
considerations into Bayesian thermostatistical investigations of Lavenda—high-temperature expansions over
inverse temperatureb induced by volume elements~quantum Jeffreys’ priors! of Bures metrics. Similarly to
Lavenda’s results based on volume elements~Jeffreys’ priors! of ~classical! Fisher informationmetrics, we
find that in the limitb→0 the quantum-theoretic priors either conform to Jeffreys’ rule for variables over
@0,̀ #, by being proportional to 1/b, or to the Bayes-Laplace principle of insufficient reason, by being con-
stant. Whether a system adheres to one rule or to the other appears to depend upon its number of degrees of
freedom.

PACS number~s!: 05.30.2d, 42.50.Dv, 02.50.2r, 02.30.Mv
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In this paper—initially motivated by the investigatio
‘‘Bayesian Approach to Thermostatistics’’@1# of Lavenda
~cf. Refs. @2–4#!—we examine certain prior distribution
v(b) over the inverse temperature parameterb that have
recently been presented in the literature@5–8#. These distri-
butions are derived from ‘‘quantum Jeffreys’ priors,’’ that i
the volume elementsdVBures of the Bures/minimal mono-
tone metric @9–12#, for various finite and infinite-
dimensional convex sets of density matrices. We find t
some, but not all, of these derived priors satisfy—in t
high-temperature limit,b→0—Jeffreys’ choice of ‘‘v(b)
}1/b, which is invariant to transformations of the formz
5bn, sincedb/b anddbn/bn are always proportional. This
would not be true if the uniform distribution were used. J
freys cited the measurement of the charge of an elect
where some methods givee while otherse2, and certainlyde
andde2 are not proportional’’@1#. ~Along these lines, let us
emphasize for the purposes of this study the obvious as
tion thatb21}T, whereT is the temperature.!

Lavenda~Ref. @1# Sec. 4! analyzed three models in pa
ticular: ~i! an ideal monatomic gas having the logarithm
its partition function}2 3

2 ln b; ~ii ! the harmonic oscillator
with frequencyn; and~iii ! a Fermi oscillator with two levels
He determined that in the high-temperature limit the first t
of these yielded priorsv(b) proportional to 1/b, while the
third gave a constant prior. Quite similarly to this set
findings of Lavenda, all the prior distributions that we w
examine below are either proportional in the hig
temperature limit to 1/b or to a constant. It is interesting t
observe that one of the infinite-dimensional systems
study—the displaced thermal states@7#—has the same prio
distribution, based on the quantum Jeffreys’ prior, as t
obtained for the Fermi oscillator by Lavenda@1#, in his dif-
ferent analytical~classical! framework. Also, when we at
tempt to apply the procedure of Lavenda to these states
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well as to the displaced squeezed thermal states@8,13#, we
find different high-temperature behavior~that is, of the 1/b
type! than when we rely upon the quantum Jeffreys’ prio
But, for the squeezed thermal states@14#, the behavior using
the two different~quantum and classical! approaches nea
b50 is 1/b in nature.

The term ‘‘quantum Jeffrey prior’’ was first employed i
Ref. @6#. There, relying upon the innovative study o
Twamley @14#—the first to explicitly determine the Bure
metric in an infinite-dimensional setting—a simple produ
~independence! form

dVBures5y~r !v~b!drdbdu, ~1!

was obtained for the squeezed thermal states

r~b,r ,u!5S~r ,u!T~b!S†~r ,u!/Z~b!. ~2!

Here,S(r ,u) is the one-photon squeeze operator, and

Z~b!5S 2 sinh
b

4 D 21

~3!

is a normalization factor~partition function! chosen so that
Tr r51. In the form~1! ~which we note is independent o
the unitary parameteru), y(r )5sinh 2r, and of more im-
mediate interest to the investigation here,

v~b!5

cosh
b

4
coth

b

4
sech

b

2

8
. ~4!

A series expansion in the vicinity ofb50 yields

v~b!5
1

2b
2

7b

192
1

667b3

184 320
1O~@b#5!. ~5!

Nearb50, the first term predominates, so we discern tha
the high-temperature limit theb-dependent part~5! of the
6087 ©2000 The American Physical Society
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6088 PRE 61PAUL B. SLATER
quantum Jeffreys’ prior~1!, in fact, satisfies the Jeffreys
Lavenda desideratum for a prior distribution overbP@0,̀ #
of being proportional to 1/b.

Subsequent to Ref.@6#, Paraoanu and Scutaru@7# studied
the case of the displaced thermal states. They found
quantum Jeffreys’ prior to be of the simple form

dVBures5

sech
b

2
dpdqdb

8
, ~6!

where the variablesp andq denote the displacements in m
mentum and position. Now, it is of interest to note that u
like Eq. ~5!, this volume element can be normalized over t
full infinite range bP@0,̀ # to a proper prior probability
distribution function,v(b)5sech (b/2)/p. ~The mean ofb
for this distribution is the product of Catalan’s consta
which is approximately 0.959 66, and 8/p, while the second
moment ofb is p2.! Now, expanding aroundb50, we have

v~b!5

sech
b

2

p
5

1

p
2

b2

8p
1

5b4

384p
1O~@b#6!. ~7!

So, nearb50, the prior behaves as a uniform distributio
not fulfilling the Jeffreys/Lavenda desideratum.~‘‘This,
however, is precisely the Bayes-Laplace rule, which Jeffr
considers as an unacceptable representation of the ignor
concerning the value of the parameter’’@1#.! The thermo-
statistical characteristics of this model for displaced therm
states@7# is essentially fully equivalent to those found b
Lavenda@1# for a Fermi oscillator with two levels: 0 ande0
@cf. Ref. @15#, Eq. ~3.5.11!#. ~‘‘As we have seen, the@Jef-
freys’# invariance property also holds for Bose particles
the high-temperature limit. However, the same is not true
Fermi particles’’ @1#. We have determined that this latte
behavior also holds generically—in the classical framew
of Lavenda—for theSUq(2) fermionmodel, relying upon its
grand partition function@Ref. @16#, Eq. ~23!#.

Kwek, Oh, and Wang@8#—making use of the Baker
Campbell-Hausdorff formula for quadratic operato
@17,13#—then, extended these studies@6,7# to the displaced
squeezed thermal states. They obtained the volume ele
@Ref. @8#, Eq. ~15!#,

dVBures5S 1

2
cosh2

b

4
sech3/2

b

2 D
3A4 cosh2~2r !2sin2~2r !dpdqdrdb

[y~r !v~b!dpdqdrdb. ~8!

Now,

v~b!5
1

2
cosh2

b

4
sech3/2

b

2
5

1

2
2

b2

16
1

23b4

3072
1O~@b#6!.

~9!

So, similarly to Eq.~7! and unlike Eq.~5!, this univariate
prior behavesuniformly in the immediate vicinity ofb50.
@The difference between Eqs.~5! and ~9!, in this respect, is
easily evident in Fig. 2 of Ref.@8#.# Kwek, Oh, and Wang
he
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noted that ‘‘whereas the marginal probability distribution f
the undisplaced squeezed state diverges asb→0 or at high
temperature, in the case of the displaced squeezed state
marginal probability distribution goes to a finite value. Th
result is reminiscent of a similar situation in chi-square d
tribution curves in which the probability density functio
diverges at one degree of freedom, but not with higher
grees of freedom. This analogy seems to indicate that
change in the marginal probability density function in term
of inverse temperature stems from an increased degre
freedom associated with the displacement of the squee
states’’ ~Ref. @8#, p. 6617!. This line of argument suggest
that perhaps a relation can be established between the
grees of freedom of a system~in particular, the three in-
stances analyzed above! and whether or not the associate
prior v(b) fulfills in the limit b→0 the Jeffreys/Lavenda
desideratum or the Bayes-Laplace rule~or conceivably nei-
ther!.

The three scenarios—squeezed thermal states, displ
thermal states, and displaced squeezed thermal stat
examined above all pertain to infinite-dimensional~continu-
ous variable! quantum systems. We now turn our attention
the cases of spin-1

2 and spin-1~that is, two- and three-level!
systems. Here, the quantum Jeffreys’ priors, that is, the
ume elements of the associated Bures metrics, are not
cally parameterized in terms of inverse temperature par
eters. So we can not immediately study the high-tempera
limit but must have recourse to a somewhat more indire
but quite standard argument. That is, we compute the o
dimensional~univariate! marginal distributions of the~mul-
tivariate! quantum Jeffreys’ priors@18#, which we interpret
as densities-of-state or structure functions,V(e). Then, ap-
plying Boltzmann factors and normalizing by the resulti
partition functionsZ(b), we determine the correspondin
canonical Gibbs distributions, V* (eub)5exp@2be
2 ln Z(b)#V(e). „We also note that Lavenda@Ref. @1#,
Eq. ~29a!# considers, as well, the different ‘‘structure fun
tion’’ V(b)5v(b)/Z(b), and the possibility of taking its
Laplace transform to obtain a moment-generating functi
Y(e).… We use the contention of Lavenda@1# ~relying upon
the asymptotic equivalence between the maximu
likelihood estimate ofb and its average value! that the im-
plied prior ~Bayes! distribution overb should be taken to be

v~b!}Avar~e!5A ]2

]b2
ln Z~b!, ~10!

where var(e) is the variance of the energy—that is,Š(e
2^e&)2

‹. This is nothing other than the application to th
canonical distribution of the Bayesian/Jeffreys procedure
constructing reparameterization-invariant priors. This co
sists of taking the prior to be proportional to the volum
element of the~classical! Fisher information metric@19#.

For spin-12 systems, relying upon the Bures/minim
monotone metric, one finds that@Ref. @20#, Eq. ~12!#

Z~b!5
2I 1~b!

b
, ~11!

whereI n(b) denotes the modified~hyperbolic! Bessel func-
tion of the first kind. Now, in this case,
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v~b!5A]2 ln Z~b!

]b2
5

1

2
2

b2

32
1

7b4

3072
1O~@b#6!,

~12!

so, again, the Jeffreys/Lavenda desideratum of being pro
tional to 1/b is not satisfied, but rather the prior behav
uniformly in the vicinity ofb50. $ ‘‘One method very com-
mon in statistical mechanics is the use of a high-tempera
expansion: asT→` one tries to expand the partition func
tion as a series in powers of some parameterk(T) such that
k(T)→0 asT→` ’’ ~Ref. @21#, p. 8!. In these studies, we
expand not the partition functionper se, but the square roo
of the second derivative with respect tob of its logarithm.%

Use of themaximalmonotone metric~which is based on
the left logarithmic derivative@12#!, in this case, rather tha
the Bures/minimal one~based on thesymmetriclogarithmic
derivative!, yields @Ref. @5#, Eq. ~24!#

Z~b!5S p

2b D 1/2

I 1/2~b!5
sinhb

b
, ~13!

leading to the arguably theoretically preferable Lange
function @22–26#,

] ln Z~b!

]b
52^e&5cothb2

1

b
. ~14!

Nevertheless, the high-temperature behavior of the imp
prior v(b)—again based on the relation~10!—remains that
of a constant near the origin, that is,

v~b!}
1

A3
2

b2

10A3
1

137b4

12 600A3
1O~@b#6!. ~15!

In Ref. @27#, we studied certainthree-level systems of the
form

r5
1

2 S v1z 0 x2 iy

0 222v 0

x1 iy 0 v2z
D , ~16!

which are one-parameter (v) extensions, in which the middle
level has become accessible, of the two-level systems,

r5
1

2 S 11z x2 iy

x1 iy 12z D . ~17!

~We note that the full convex set of spin-1 density matrice
eightdimensional in character@28#.! The univariate margina
probability distribution overv, obtained by integrating ove
the variablesx, y, and z in the normalized quadrivariat
Bures volume element

p~v,x,y,z!5
3

4p2v~12v !1/2~v22x22y22z2!1/2
~18!

is @Ref. @27#, Eq. ~19!#

p̃~v !5
3v

4A12v
, 0<v<1. ~19!
r-

re

n

d

s

We interpreted Eq.~19! as a density-of-states or structu
function. We then determined$Ref. @5#, Eq. ~42!% the asso-
ciated partition function

Z~b!5
3e2b@~112b!Ap erfi~Ab!22Abeb#

8b3/2
~20!

@here erfi(z) represents the imaginary error function, that
erf(iz)/ i # by applying the Boltzmann factore2bv5e2b^H& to
Eq. ~19!, where

H5
1

2 S 1 0 0

0 0 0

0 0 1
D . ~21!

This leads—via the argument of Lavenda@1# again, based on
the relation~10!—to

v~b!}
1

b
2

119b

40
1

1891b2

140
1O~@b#3!, ~22!

thus, satisfying the Jeffreys/Lavenda desideratum. Si
spin-12 particles are fermions and spin-1 particles are boso
these results conform to Lavenda’s assertion@1# that priors
associated with bosons satisfy the Jeffreys’ rule, while f
mions do not. We also note, somewhat in line with the d
cussion of Kwek, Oh, and Wang@8#, quoted above, that ou
spin-12 example has an underlying three degrees of freed
while the spin-1 case has one more.

For the spin-12 systems~17!, the trivariate~normalized!
quantum Jeffreys’ prior is

p~x,y,z!5
1

p2~12x22y22z2!1/2
. ~23!

The univariate marginal probability distributions are of t
form

p̃~z!5
2~12z2!1/2

p
. ~24!

Interpreting Eq.~24! as a density-of-states function, and u
ing as the Hamiltonian,

H5S 1 0

0 21D , ~25!

one arrives at the partition function~11!.
Now, let us seek to apply the method for generating pri

over b of Lavenda directly to the three infinite-dimension
scenarios~squeezed thermal states, displaced thermal sta
and displaced squeezed thermal states! first considered
above, by taking for the partition functionZ(b) in Eq. ~10!,
the normalization factor that renders the trace unity, so t
one obtains a~properly normalized! density matrix. For the
squeezed thermal states, substituting Eq.~3! into Eq. ~10!,
we have

v~b!5
1

b
2

b

96
1

7b2

92 160
1O~@b#4! ~26!
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6090 PRE 61PAUL B. SLATER
thus conforming to Jeffreys’ rule—under which lnb, not b
itself, is distributed uniformly. For the other two types
infinite-dimensional thermal states considered above, the
sult must be the same as well, becauseZ(b) takes the same
form in them as Eq.~3!, since the displacement and squee
operators are unitary~Ref. @13# p. 4187!. Contrastingly,
based on the volume elements~quantum Jeffreys’ priors! of
the associated Bures metrics, as we have noted in the
part of this paper, the prior Eq.~4! over b for the squeezed
thermal states does conform to the Jeffreys/Lavenda de
eratum in the high-temperature limit, but the priors for t
other two, Eqs.~6! and ~9!, follow the Bayes-Laplace prin
ciple of insufficient reason.@One might then be puzzled b
why, despite the unitarity of the squeeze and displacem
operators, these three priors take different forms~cf. Ref.
@29#!.#

It would, of course, be of interest to study invarian
properties of prior distributions over the inverse temperat
parameterb for additional physical scenarios, both in rel
tion to quantum Jeffreys’ priors and the~Fisher information!
scheme of Lavenda for obtaining such distributions, and
elucidate further any underlying governing principles.

Let us note the assertion of Frieden and his associates
many physical laws have a Fisher information-theoretic ba
@30#. In particular, Frieden, Plastino, Plastino, and Sof
have ‘‘shown that the Legendre-transform structure of th
h
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modynamics can be replicated without any changes if
replaces the entropyS by Fisher’s information measureI ’’
@31#. Also, Grover’s quantum search algorithm has be
demonstrated to be determined by a condition for minim
ing Fisher information@32#. In influential work, Voiculescu
@33# has developed analogues of the entropy and Fisher
formation measure for random variables in the context
freeprobability theory.~Three different models of free prob
ability theory are provided by convolution operators on fr
groups, creation and annihilation operators on the Fock sp
of Boltzmann statistics, and random matrices in the largeN
limit.!

In concluding, let us observe that Braunstein and Ca
@11# derived the Bures distance between two density ope
tors by optimizing the Fisher information distance~obtained
using the Crame´r-Rao bound on the variance of any estim
tor! over arbitrary generalized quantum measurements,
just ones described by one-dimensional orthogonal pro
tors. Of course, thevolume elements~Jeffreys’ priors and
quantum Jeffreys’ priors! of the Fisher information and
Bures metrics have been the basis for the thermostatis
investigation here.

I would like to express appreciation to the Institute f
Theoretical Physics for computational support in this
search and to K. Z˙yczkowski for his sustained interest in m
work.
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