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High-temperature expansions of Bures and Fisher information priors
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For certain infinite and finite-dimensional thermal systems, we obtain—incorporating quantum-theoretic
considerations into Bayesian thermostatistical investigations of Lavenda—high-temperature expansions over
inverse temperatur@ induced by volume elementguantum Jeffreys’ priojsof Bures metrics. Similarly to
Lavenda’s results based on volume elemddeffreys’ priors of (classical Fisher informationmetrics, we
find that in the limit3—0 the quantum-theoretic priors either conform to Jeffreys’ rule for variables over
[002], by being proportional to 13, or to the Bayes-Laplace principle of insufficient reason, by being con-
stant. Whether a system adheres to one rule or to the other appears to depend upon its number of degrees of
freedom.

PACS numbe(s): 05.30—d, 42.50.Dv, 02.56-r, 02.30.Mv

In this paper—initially motivated by the investigation well as to the displaced squeezed thermal steek3], we
“Bayesian Approach to Thermostatisticd'1l] of Lavenda find different high-temperature behavi@hat is, of the 18
(cf. Refs.[2—4]))—we examine certain prior distributions type) than when we rely upon the quantum Jeffreys’ priors.
w(B) over the inverse temperature paramefethat have But, for the squeezed thermal staéd], the behavior using
recently been presented in the literat{Be-8]. These distri- the two different(quantum and classigakpproaches near
butions are derived from “quantum Jeffreys’ priors,” that is, =0 is 1/8 in nature. _ _ _
the volume elements Vg, o Of the Bures/minimal mono- _ 1he term “quantum Jeffrey prior” was first employed in
tone metric [9-17, for various finite and infinite- Ref. [6]. There, relying upon the innovative study of
dimensional convex sets of density matrices. We find that Wamley [14]—the first to explicitly determine the Bures
some, but not all, of these derived priors satisfy—in theMetric in aninfinite-dimensional setting—a simple product
high-temperature limit3— 0—Jeffreys’ choice of %w(g)  (independendeform
«1/B, which is invariant to transformations of the forth _
=", sincedB/B anddg"/ g" are always proportional. This dVeures= (1) w(B)drdpdo, @
would not be true if the uniform distribution were used. Jef-\,55 obtained for the squeezed thermal states
freys cited the measurement of the charge of an electron,
where some methods gieavhile otherse?, and certainlyde p(B,r,0)=S(r,0)T(B)S'(r,0)/Z(B). 2
andde? are not proportional’{1]. (Along these lines, let us
emphasize for the purposes of this study the obvious asseliere,S(r, 8) is the one-photon squeeze operator, and
tion that 3~ =T, whereT is the temperaturg. .

Lavenda(Ref. [1] Sec. 4 analyzed three models in par- Z(,8)=(2 sinhé> 3)
ticular: (i) an ideal monatomic gas having the logarithm of 4
its partition function=— 2 In 3; (ii) the harmonic oscillator
with frequencyw; and(iii ) a Fermi oscillator with two levels. 1S @ normalization factotpartition function chosen so that
He determined that in the high-temperature limit the first twoT" p=1. In the form(1) (which we note is independent of
of these yielded priorss(8) proportional to 18, while the  the unitary parametef), v(r)=sinh2, and of more im-
third gave a constant prior. Quite similarly to this set of mediate interest to the investigation here,
findings of Lavenda, all the prior distributions that we will

examine belpvy are either proportiona! _in the_ high- coshécothéseché
temperature limit to 18 or to a constant. It is interesting to - 44 2
observe that one of the infinite-dimensional systems we w(B)= 8 ' )

study—the displaced thermal sta{@d—has the same prior

distribution, based on the quantum Jeffreys’ prior, as thal series expansion in the vicinity g#=0 yields
obtained for the Fermi oscillator by Lavenfi, in his dif-

ferent analytical(classical framework. Also, when we at- 1 78 6678° 5

tempt to apply the procedure of Lavenda to these states, as w(B)= ﬁ_ Ez+ 184 320+ OAP). ®

Near =0, the first term predominates, so we discern that in
*FAX: (805 893-7995. Electronic address: slater@itp.ucsb.edu the high-temperature limit th@-dependent par€5) of the
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quantum Jeffreys’ prio(1), in fact, satisfies the Jeffreys/ noted that “whereas the marginal probability distribution for

Lavenda desideratum for a prior distribution oyge [0,0] the undisplaced squeezed state divergeg-a<) or at high

of being proportional to 13. temperature, in the case of the displaced squeezed state, the
Subsequent to Ref6], Paraoanu and Scutafid] studied marginal probability distribution goes to a finite value. The

the case of the displaced thermal states. They found theesult is reminiscent of a similar situation in chi-square dis-

quantum Jeffreys’ prior to be of the simple form tribution curves in which the probability density function
diverges at one degree of freedom, but not with higher de-
sech'[jdpdq(jG grees of freedom. This analogy seems to indicate that the

2 change in the marginal probability density function in terms
dVBureS:T' (6) of inverse temperature stems from an increased degree of

freedom associated with the displacement of the squeezed
where the variablep andq denote the displacements in mo- states” (Ref. [8], p. 6617. This line of argument suggests
mentum and position. Now, it is of interest to note that un-that perhaps a relation can be established between the de-
like Eq. (5), this volume element can be normalized over thegrees of freedom of a systefin particular, the three in-
full infinite range Be[0,~] to a proper prior probability — stances analyzed abgvand whether or not the associated
distribution function,w(B)=sech (3/2)/r. (The mean of3  prior () fulfills in the limit 5—0 the Jeffreys/Lavenda
for this distribution is the product of Catalan’s constant,desideratum or the Bayes-Laplace rite conceivably nei-
which is approximately 0.959 66, and-8/while the second then.

moment ofg is 72.) Now, expanding aroung8=0, we have The three scenarios—squeezed thermal states, displaced
thermal states, and displaced squeezed thermal states—

B examined above all pertain to infinite-dimensiof@ntinu-
sechy g2 58 ous variablg quantum systems. We now turn our attention to
= -8~ 384 +0([B1%. (7  the cases of spig-and spin-1(that is, two- and three-level

systems. Here, the quantum Jeffreys’ priors, that is, the vol-

So, near3=0, the prior behaves as a uniform distribution, YMe elements qf thg associated_ Bures metrics, are not typi-
not fulfiling the Jeffreys/Lavenda desideratunt This, cally parameterized in terms of inverse temperature param-
however, is precisely the Bayes-Laplace rule, which Jeffrey§te_r3- So we can not immediately study the h|gh-tem_perature
considers as an unacceptable representation of the ignoranii®it but must have recourse to a somewhat more indirect,
concerning the value of the parameteil].) The thermo- Put quite standard argument. That is, we compute the one-
statistical characteristics of this model for displaced thermaflimensional(univariatg marginal distributions of thémul-
states[7] is essentially fully equivalent to those found by tivariate quantum Jeffreys’ prior§18], which we interpret
Lavenda[1] for a Fermi oscillator with two levels: 0 angy ~ @S densities-of-state or structure functiofie). Then, ap-
[cf. Ref. [15], Eq. (3.5.11]. (“As we have seen, thgJef- pIyw_ug Boltzm:_;mn factors and norm_allzmg by the resul_tmg
freys’] invariance property also holds for Bose particles inPartition functionsZ(g), we determine the corresponding
the high-temperature limit. However, the same is not true fo€anonical  Gibbs  distributions, 0* (el B)=exf — Be
Fermi particles”[1]. We have determined that this latter —INZ(8)1Q(e). (We also note that LavendgRef. [1],
behavior also holds generically—in the classical frameworkEd: (298] considers, as well, the different “structure func-
of Lavenda—for thes U,(2) fermionmodel, relying upon its  tion” €(8)=w(B)/Z(p), and the possibility of taking its
grand partition functionRef. [16], Eq. (23)]. Laplace transform to obtaln a moment-generating function,

Kwek, Oh, and Wang8}—making use of the Baker- Y(€).) We use the contention of Lavengia] (relying upon
Campbell-Hausdorff formula for quadratic operatorsth® asymptotic equivalence between the maximum-
[17,13—then, extended these studigs7] to the displaced likelihood estimate of8 and its average valdighat the im-
squeezed thermal states. They obtained the volume elemepfied prior (Bayes distribution overg should be taken to be

w(B)=

[Ref.[8], Eq. (15)] >
1 B B w(B)=\Vvare)= \/ —InZ(B), (10
dVgyres= | = cosif —sech?~ B
2 4 2
: where varg) is the variance of the energy—that i§e
X \/4 costf(2r) —sirf(2r)dpdqdrd3 —(€))?). This is nothing other than the application to the
=u(r)w(B)dpdqdrds. (8) canonica[ distribution of the Baygsian{Jeffrey_s procedure for
constructing reparameterization-invariant priors. This con-
Now, sists of taking the prior to be proportional to the volume

element of thgclassical Fisher information metri¢19].

1 B B 1 p? 233 For spins systems, relying upon the Bures/minimal
w(B)= ECOSsteCﬁIZEZ 5 16 30727 O([B1°). monotone metric, one finds theRef. [20], Eq. (12)]
9
© g 2aB) y
So, similarly to Eq.(7) and unlike Eq.(5), this univariate (B)= B (11)

prior behavesiniformly in the immediate vicinity of3=0.
[The difference between Eq) and (9), in this respect, is  wherel ,(8) denotes the modifiethyperbolig Bessel func-
easily evident in Fig. 2 of Ref.8].] Kwek, Oh, and Wang tion of the first kind. Now, in this case,
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#nzg) 1 B> 18 We interpreted Eq(19) as a density-of-states or structure
=/ 6 function. We then determineRef. [5], Eqg. (42)} the asso-
w(B)=/ 72 3t sor QLA etRef. [5], Eq. (42)

ciated partition function

(12)
-B i — B
so, again, the Jeffreys/Lavenda desideratum of being propor- Z(B)= 3e [(1+2B)\/;erf|( \/E) 2\/Ee ] (20)
tional to 1/8 is not satisfied, but rather the prior behaves 8B°%2

uniformly in the vicinity of 3=0. {“One method very com- i ] ] ) )

mon in statistical mechanics is the use of a high-temperaturi€re erfi¢) represents the imaginary error function, that is

expansion: ag — one tries to expand the partition func- €rf(iz)/i1by applying the Boltzmann facta #=e~ A to

tion as a series in powers of some parame(@) such that  Ed. (19), where

k(T)—0 asT—=" (Ref.[21], p. 8. In these studies, we

expand not the partition functioper se but the square root

of the second derivative with respect foof its logarithm} H=
Use of themaximalmonotone metri¢which is based on

the left logarithmic derivativg 12]), in this case, rather than

N| -
o O -
o O O

0
0]. (21
1

derivative, yields[Ref. [5], Eq. (24)] the relation(10)—to
a |12 sinhg 1 1198 189132
Z(B)=<ﬁ> l 1A B)= 5 13 w(ﬁ)aE—Tf+ 14](';3 +0O([B]}), (22)

leading to the arguably theoretically preferable Langevi

function [22—26. Nthus, satisfying the Jeffreys/Lavenda desideratum. Since

spin+ particles are fermions and spin-1 particles are bosons,

anZ(B) 1 these results conform to Lavenda’s asserfibhthat priors
————=—(e)=cothB— —. (14 associated with bosons satisfy the Jeffreys’ rule, while fer-
P B mions do not. We also note, somewhat in line with the dis-

gussion of Kwek, Oh, and Warl@], quoted above, that our
spin4 example has an underlying three degrees of freedom,
while the spin-1 case has one more.

For the spins systems(17), the trivariate(normalized

Nevertheless, the high-temperature behavior of the implie
prior w(B)—again based on the relatigh0)—remains that
of a constant near the origin, that is,

1 B2 1378 quantum Jeffreys’ prior is
w(B)x —— + +0([B1%). (15
(B 5~ 105 " 1ze00 T OLAY .
p(X,y,z)= . (23
In Ref.[27], we studied certaithreelevel systems of the w2 (1—x2—y?— 27?12
form
The univariate marginal probability distributions are of the
1 v+z 0 X—iy form
p:z 0 2—2v 0 s (16) _ 2(1_22)1/2
x+iy 0 v—12 p(2)=—"" (24)

which are one-parametes ) extensions, in which the middle

level has become accessible, of the two-level systems, Interpreting Eq(24) as a density-of-states function, and us-

ing as the Hamiltonian,

(17) B 1 0)
H_(o -1/ 29

1
=3

1+z x—iy
x+iy 1-z)°

(We note that the full convex set of spin-1 density matrices is . t th tition functiodl
eightdimensional in charact¢R8].) The univariate marginal one arrives at the partition functicdl).

probability distribution ovew, obtained by integrating over Now, let us seektp apply the method .fof gene_ratmg priors
the variablesx, y, and z in the normalized quadrivariate over B of Lavenda directly to the three infinite-dimensional
Bures volume ’ele'ment scenariogsqueezed thermal states, displaced thermal states,

and displaced squeezed thermal statésst considered
3 above, by taking for the partition functiof 8) in Eq. (10),
(18)  the normalization factor that renders the trace unity, so that
47 (1-v) (w2 - x*—y?—2%)"? one obtains dproperly normalizefidensity matrix. For the
, squeezed thermal states, substituting &).into Eq. (10),
is [Ref.[27], Eq. (19)] we have

p(U-X,y,Z):

~ 1 B 18
= , Osv<1. 19 - _ -4 &
Pw)= i, Y (19 ©(B)=%" 56" 52160

+O([B1Y (26)
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thus conforming to Jeffreys’ rule—under which@anot 3 modynamics can be replicated without any changes if one
itself, is distributed uniformly. For the other two types of replaces the entrop$ by Fisher's information measure’
infinite-dimensional thermal states considered above, the ré31]. Also, Grover's quantum search algorithm has been
sult must be the same as well, becad$g) takes the same demonstrated to be determined by a condition for minimiz-
form in them as Eq(3), since the displacement and squeezeing Fisher informatio{32]. In influential work, Voiculgscu .
operators are unitaryRef. [13] p. 4187. Contrastingly, [33] has developed analogues of the entropy and Fisher in-
based on the volume elemerftmiantum Jeffreys’ priojsof ~ formation measure for random variables in the context of
the associated Bures metrics, as we have noted in the fir§i€probability theory(Three different models of free prob-
part of this paper, the prior Ed4) over g for the squeezed ability theory are provided by convolution operators on free

thermal states does conform to the Jeffreys/Lavenda desidlfOupPs, creation ano! annihilation operators on 'ghe Fock space
eratum in the high-temperature limit, but the priors for theOf Boltzmann statistics, and random matrices in the laige-

- limit.)
other two, Egs(6) and (9), follow the Bayes-Laplace prin- . .
ciple of insufficient reasor{One might then be puzzled by In concluding, let us observe that Braunstein and Caves

why, despite the unitarity of the squeeze and displacemergtu] derived the Bures distance between two density opera-
operators, these three priors take different forfos Ref. ors by optimizing the Fisher information distan@btained

[29)).] using the CrarmeRao bound on the variance of any estima-
' tor) over arbitrary generalized quantum measurements, not

It would, of course, be of interest to study invariance.ust ones described by one-dimensional orthogonal proiec-
properties of prior distributions over the inverse temperatur y ) 9 Proj
ors. Of course, thevolume element$leffreys’ priors and

parameters for additional physical scenarios, both in rela- quantum Jeffreys’ priojsof the Fisher information and

tion to quantum Jefireys priors and t|(1|§|sher_|nfo_rmat|om Bures metrics have been the basis for the thermostatistical
scheme of Lavenda for obtaining such distributions, and tg

. . . o investigation here.
elucidate further any underlying governing principles.

Let us note the assertion of Frieden and his associates that | would like to express appreciation to the Institute for
many physical laws have a Fisher information-theoretic basi¥heoretical Physics for computational support in this re-
[30]. In particular, Frieden, Plastino, Plastino, and Soffersearch and to K. yczkowski for his sustained interest in my
have “shown that the Legendre-transform structure of therwork.
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